Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress.
نویسندگان
چکیده
Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.
منابع مشابه
Vascular Signaling by Free Radicals Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress
J. Scott McNally,1,3 Michael E. Davis,1,3 Don P. Giddens,2 Aniket Saha,1,2 Jinah Hwang,1,2 Sergey Dikalov,1 Hanjoong Jo,1,2 and David G. Harrison1,3 1Division of Cardiology, 2Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, and 3Molecular and Systems Pharmacology Program, Emory University, Atlanta, 30322; and the Atlanta Veterans Hospital Medical Cen...
متن کاملReactive oxygen species in mechanotransduction.
A RANDOMIZED CLINICAL TRIAL by the Acute Respiratory Distress Syndrome Network (1) demonstrated a 22% reduction in mortality in patients by reducing the tidal volume for mechanical ventilation from the conventional setting of 12 ml/kg to a lower setting of 6 ml/kg. This dramatic decrease in mortality has stimulated significant interest in the mechanisms of ventilatorinduced lung injury and the ...
متن کاملOscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion.
Arterial regions exposed to oscillatory shear (OS) in branched arteries are lesion-prone sites of atherosclerosis, whereas those of laminar shear (LS) are relatively well protected. Here, we examined the hypothesis that OS and LS differentially regulate production of O2- from the endothelial NAD(P)H oxidase, which, in turn, is responsible for their opposite effects on a critical atherogenic eve...
متن کاملSystemic regulation of vascular NAD(P)H oxidase activity and nox isoform expression in human arteries and veins.
OBJECTIVE Impaired endothelial function, characterized by nitric oxide scavenging by increased superoxide production, is a hallmark of vascular disease states. However, molecular mechanisms regulating superoxide production in human blood vessels remain poorly defined. METHODS AND RESULTS We compared endothelial function, vascular superoxide production, and the expression of NAD(P)H oxidase su...
متن کاملRole of increased production of superoxide anions by NAD(P)H oxidase and xanthine oxidase in prolonged endotoxemia.
Superoxide anions (O2-) are supposedly involved in the pathogenesis of endothelial dysfunction. We investigated whether the enhanced formation of O2- is involved in the attenuation of endothelium-dependent relaxation induced by lipopolysaccharide (LPS). Rats were injected with LPS (10 mg/kg IP), the aorta was removed after 12 or 30 hours, and generation of O2-, H2O2, and ONOO- was measured usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 285 6 شماره
صفحات -
تاریخ انتشار 2003